低对称畸变晶场下 YIG 和 YGG:Fe³⁺ 吸收光谱的理论解释

白贵儒 陆长青 (中国科技大学凝聚态理论研究室)

提 要

本文利用络合物中 Fe³⁺ 的 SOF-d 轨道理论,分别 在 实际 的 低 对 称 场 D_{3d} 和 S_4 下 对 YIG 和 YGG:Fe³⁺ 中的 *d-d* 跃迁谱进行了理论计算。 仅用两个参数 N 和 μ 就 解释了 YIG 中 10800 cm⁻¹, 21150 cm⁻¹, 25700 cm⁻¹, 27600 cm⁻¹ 处的谱分裂,并且指出 YGG:Fe³⁺ 中的 26320 cm⁻¹, 26970 cm⁻¹ 为 Fe³⁺ 对的双中心跃迁谱。基本澄清了 YIG 和 YGG:Fe³⁺ 吸收谱理论的某些混淆。

关键词: YIG 的吸收光谱; YGG: Fe³⁺ 的吸收光谱。

一、引言

激光基质材料特别是石榴石系列的研究一直是人们感兴趣的课题之一。近年来,一些 文献^[1~53] 报道了比较完整的 YIG 和 YGG:Fe⁸⁺ 的吸收光谱的 实验研究。由于 YIG 和 YGG:Fe⁸⁺ 中的 Fe⁸⁺ 都占据两种格位: 畸变 Oh 位和畸变 Td 位^{[4,51}], 其真实对称性分别 为 4 和 $3^{(6,73)}$, 因而得到的吸收谱比较复杂, 至今在理论上也没有给出一个十分令人满意的 解释。G. B. Scott 等人^[1~3] 在高对称 Oh 和 Td 近似下解释了 YIG 和 YGG:Fe⁸⁺ 的吸 收谱,但他们无法解释谱分裂。Tran Khanh Vien 等^[4] 认为畸变场对谱分裂的 贡献 可以 忽略,谱分裂是由旋轨耦合引起。例如 YIG 中^[5] 20710 cm⁻¹ 谱带分裂 成 20773 cm⁻¹ 和 20970 cm⁻¹,对此至少存在着四种不同的解释^[53],引起一定的混淆。G. B. Scott 等人认为这 是 Td 对称下的 ${}^{*}E(G)$ 和 ${}^{*}A(G)$ 在低对称场下的分裂; 而 Tran Khanh Vien 等人则认为 这是 Oh 对称下的 ${}^{*}I$ 谱项的 ${}^{*}A_{2}$ 和 ${}^{*}T_{1}$ 由于旋轨耦合在这儿的反映; 我们认为二重态到六 重态的跃迁属 4S=2 跃迁,强度不应该象文献[3]所示的那么强,而应该用畸变场来解释。 区别于 G. B. Scott 等人的推断,我们的计算结果表明 20773 cm⁻¹ 和 20970 cm⁻¹ 分别属于 ${}^{*}E[T_{2}(D)]$ 和 ${}^{*}B[E(G)]$ 的跃迁。同样 对 YGG:Fe⁸⁺ 的 20160 cm⁻¹ 和 20330 cm⁻¹ 谱 也 有类似现象。从我们的计算结果来看,用低对称下的晶场理论计算,就能比较令人满意地解 释 YIG 和 YGG:Fe⁸⁺ 的实验结果。

二、YIG 和 YGG:Fe³⁺ 的能级计算

考虑低掺杂情形,可以认为 YGG 中 Fe³⁺ 的掺入不会改变其晶格参数。 YIG 和 收稿日期: 1986年11月18日

Fig. 1 Octahedron co-ordination of oxygen Fig. 2 Tetrahedron co-ordination of oxygen ions about an Fe³⁺ ion($\cdot d_{68}$, $\cdot \cdot d_{61}$)

ions about an Fe³⁺ ion $(\cdot d_{41}, \cdot \cdot d_{48})$

YGG:Fe³⁺ 中的 Fe³⁺ 只处在 3 和 4 两种格位上,结合图 1、图 2 和 晶 格 参 数,我们将在 D_{34} 和 S_4 对称下计算 YIG 和 YGG: Fe⁸⁺ 的 d-d 跃迁谱。

根据 Ferdinand Euler 等人⁶⁰ 的工作, YIG 和 YGG 的晶格参数如表1 所示, 其中 de 和 d_4 分别为 D_{3a} 和 S_4 中的 Fe⁸⁺ 到周围配体 (O²⁻)间的距离。

		D_{3d}		<i>B</i> ₄				
	d ₆ ×10−³Å	d ₆₁ ×10−3Å	d ₆₈ ×10−3Å	d₄×10−3 Å	$d_{41} imes 10^{-3}$ Å	$d_{48} imes 10^{-8} m \AA$		
YIG	2019 ± 6	3010±11	2692±9	1866 ± 5	3148±9	2837 ± 12		
YGG	1995 ± 4	2966±7	2668±6	1849±3	3117±6	2810±7		

Table 1 Structure data of YIG and YGG

Fe³⁺ 的最外层电子为 d⁵,其晶场势可表为

$$V_{\sigma} = \sum_{i=1}^{5} V(i)_{\circ}$$
 (1)

其中 V(i)为单电子晶场势。

用赵等人提出的 Fe³⁺ 的 SCF-d 轨道^[3]

$$R_{3d}(r) = 0.6830 \left[\frac{10.64^7}{6!} \right]^{1/2} \cdot r^2 \cdot \exp(-5.32r) + 0.5463 \left[\frac{3.366^7}{6!} \right]^{1/2} r^2 \cdot \exp(-1.68r)_{\circ}$$
(2)

可以求出 $B_0 = 1085 \text{ cm}^{-1}$, $c_0 = 3954 \text{ cm}^{-1}$, $\langle r^2 \rangle_0 = 2.07 a_0^2$, $\langle r^4 \rangle_0 = 13.915 a_{00}^4$, 其中 a_0 为 Bohr 半径, Bo 和 co 为 Racah 参数。

考虑到 Fe⁸⁺ 与 O²⁻ 成键时的共价效应,我们再引入平均共价因子 №³³.则

 $B = \overline{N}^4 \cdot B_0, \ C = \overline{N}^4 \cdot C_0, \ \langle r^2 \rangle = \overline{N}^2 \cdot \langle r^2 \rangle_0, \ \langle r^4 \rangle = \overline{N}^4 \langle r^4 \rangle_0$

进而考虑 Racah-Tress 修正, $\alpha = \overline{N}^{*} \cdot \alpha_{0}$, $\beta = \overline{N}^{*} \cdot \beta_{00}$, 其中 $\alpha_{0} = 65 \text{ cm}^{-1}$, $\beta_{0} = -131$ cm⁻¹

现在,只要知道了晶场矩阵元,代入上述参量值就可算出 d-d 跃迁谱。

对于 D_{st} 对称, 万克宁等人^[8] 已经给出了晶场矩阵元, 只要代入 q = -2e (配体为

 $O^{2-}), R = d_6, \Theta = \sin^{-1} \left[\frac{d_{68}}{\sqrt{3} d_6} \right], -\mu = \frac{P}{\theta} (与偶极矩有关的可调参数)$ 。 就能算出 YIG 和 YGG: Fe⁸⁺ 在 D_{34} 下的能级。结果见表 2、表 3。对于 S_4 对称,其单电子晶场势 $V(i) = A_{20}r_i^2 Y_{2,0}(\theta_i, \varphi_i) + A_{40}r_i^4 Y_{4,0}(\theta_i, \varphi_i) + A_{44}r_i^4 [Y_{4,4}(\theta_i, \varphi_i) + Y_{4,-4}(\theta_i, \varphi_i)]_{0}$ (3)

Table 2	Comparison between	theory and	experiment about	t the absorption	appeatrs of VIG
Lable 4	Comparison between	theory and	r experiment abou	t the absorption	spectra of 1104

transition term	D_{3d} ($\overline{N}^2=0.826, \mu=0.12$ a.u.)						
	theoretical values	experiment values					
${}^{6}A_{1} \rightarrow {}^{4}A_{2}[T_{1g}(G)]$	10784.3	10400 (4.2K)					
4 <i>E</i> [<i>T</i> _{1<i>g</i>} (<i>G</i>)]	11171.3	11000, 11600					
${}^{4}A_{1}[T_{2g}(G)]$	14327.0	14550					
${}^{4}E[T_{2g}(G)]$	17054.2						
${}^{4}E[E_{g}(G)]$	21312.5	21320					
⁴ A ₁ [A ₁₉ (G)]	21778.2	21450					
${}^{4}E[T_{2g}(D)]$	23378.9	23280, 23600					
${}^{4}A_{1}[T_{2g}(D)]$	24850.9	24200					
${}^{4}E[E_{g}(D)]$	25696.3	25800 (77 K)					
${}^{4}A_{2}[T_{1u}(P)]$	28924.9	28170					
4E[T _{1u} (P)]	32817.6						
	$S_4 \ (\overline{N^2}=0.835, \ \mu=0.25)$						
	theoretical values	experiment values					
$^{6}A \rightarrow ^{4}E[T_{1}(G)]$	13070.9)					
$^{4}A[T_{1}(G)]$	16505.8	16160, 16420, 17360 (4.2K)					
$4E[T_2(G)]$	19929.4	19190, 19650, 20200					
⁴ <i>E</i> [<i>T</i> ₂ (<i>D</i>)]	20668.9	20773					
* B[E(G)]	21270.9	20970					
$^{4}B[T_{2}(G)]$	21899.6]					
4 <i>A</i> [<i>E</i> (<i>G</i>)]	22067.2	22550					
$A[A_1(G)]$	22067.2						
⁴ B[E(D)]	25602.8	25600 (77 K)					
${}^{4}B[T_{2}(D)]$	26301.4						
${}^{4}A[E(D)]$	26596.3	27400					
⁴ <i>A</i> [<i>T</i> ₁ (<i>P</i>)]	29066.1	30000					
4 <i>E</i> [<i>T</i> ₁ (<i>P</i>)]	31485.3						

4

.

	D_{3d} ($\overline{N}^2=0.813$, $\mu=0.08$)					
transition term	theoretical values	experimental values (77 K)				
$^{6}A_{1} \rightarrow {}^{4}A_{2}[T_{1g}(G)]$	10116.5	······································				
4 <i>E</i> [<i>T</i> _{1<i>g</i>} (<i>G</i>)]	10492.9	10300				
$4A_1[T_{2g}(G)]$	13645.7	13800				
4E[T _{2g} (G)]	16187.7					
$4E[E_g(G)]$	20679.0	20600				
${}^{4}A_{1}[A_{1g}(G)]$	21098.1	21050				
$4E[T_{2g}(D)]$	22665.4	22730, 23440				
$4A_1[T_{2g}(D)]$	24024.7	23050				
4E[E _g (D)]	24931.7					
$4A_2[T_{1u}(P)]$	28193.5	1 00000				
$4E[T_{1u}(P)]$	31922.7	} 29000				
$^{6}A_{1} + ^{6}A_{1} \rightarrow ^{4}A[T_{1g}(G)] + ^{4}E[T_{2g}(G)]$	26304.2	26320				
$^{6}A_{1} + ^{6}A_{1} \rightarrow {}^{4}E[T_{1g}(G)] + {}^{4}E[T_{2g}(G)]$	26680.6	26970				
<i>e</i>	$S_4 \ (\bar{N}^2 = 0.817, \ \mu = 0.2)$					
	theoretical values	experimental values (77 K)				
${}^{6}A \rightarrow {}^{4}E[\mathcal{T}_{1}(G)]$	12530.0					
4 <i>A</i> [<i>T</i> ₁ (<i>G</i>)]	15856.5	15400				
${}^{4}E[T_{2}(G)]$	19243.9	18730				
$^{4}E[T_{2}(D)]$	19981.8	20160				
⁴ <i>B</i> [<i>E</i> (<i>G</i>)]	20541.0	20330				
${}^{4}\mathcal{B}[T_{2}(\mathcal{G})]$	21139.1					
⁴ <i>A</i> [<i>E</i> (<i>G</i>)]	21306.3	21640				
$^{4}A[\mathcal{A}_{1}(G)]$	21306.3					
⁴ B[E(D)]	24802.0	24380				
⁴ B[T ₂ (D)]	25473.1	25460				
⁴ <i>A</i> [<i>E</i> (<i>D</i>)]	25768.4	25650				
⁴ <i>A</i> [<i>T</i> ₁ (<i>P</i>)]	28065.0					
⁴ <i>E</i> [<i>T</i> ₁ (<i>P</i>)]	30419.5	······································				

Table 3 Comparison between theory and experiment of the absorption specta in YGG: Fe^{3+}

报

其中 η, θ, φ, 为第 i 个电子坐标,

$$\begin{aligned} A_{20} &= -\frac{4\sqrt{5\pi}}{5} \left(3\cos^2\Theta - 1\right) \frac{eq}{R^3} \left(1 + \frac{3\mu}{R}\right), \\ A_{40} &= -\frac{\sqrt{\pi}}{3} \left(35\cos^4\Theta - 30\cos^2\Theta + 3\right) \frac{eq}{R^5} \left(1 + \frac{5\mu}{R}\right), \\ A_{44} &= \frac{\sqrt{70\pi}}{6} \sin^4\Theta \cdot \frac{eq}{R^5} \left(1 + \frac{5\mu}{R}\right)_0 \end{aligned}$$

$$(4)$$

定义晶场参量

$$D_{1} = -\frac{\sqrt{5}}{14\sqrt{\pi}} \cdot A_{20} \cdot \langle r^{2} \rangle,$$

$$D_{2} = \frac{1}{14\sqrt{\pi}} \cdot A_{40} \cdot \langle r^{4} \rangle,$$

$$D_{3} = \frac{1}{\sqrt{4\pi}} \cdot \sqrt{\frac{10}{7}} A_{44} \langle r^{4} \rangle_{o}$$
(5)

可推出 d^5 电子组态在 S_4 对称下的晶场矩阵元(见附录)。代入 q = -2e(配体为 O^{2^-}), $R = d_4$, $\Theta = \sin^{-1} \left[-\frac{d_{48}}{2d_4} \right]$ 。

就能算出 YIG 和 YGG: Fe³⁺ 在 S₄ 对称下的能级,结果见表 2、表 8。 从理论和实验的对 比可见该理论的解释是相当成功的。

从 D. L. Wood^[53] 及 G. B. Scott^[53] 等人做的 YIG 谱图可以看出, ${}^{t}B[T_{1g}(G)]$ 远比 ${}^{t}A[T_{1g}(G)]$ 强,故在 YGG:Fe³⁺ 的 77 K 谱中的 10300 cm⁻¹ 峰应对应 ${}^{t}B[T_{1g}(G)]$ 。同样 理由, YIG 中的 11000 cm⁻¹ 和 11600 cm⁻¹ 是 ${}^{t}B[T_{1g}(G)]$ 在更低对称下的分裂。这种现 象还发生在 ${}^{t}B[T_{2g}(D)]$ 处。

G. B. Scott 等人^[33] 认为 YIG 中 21390 cm⁻¹ 处的分裂谱 21320 cm⁻¹ 和 21450 cm⁻¹ 分 别对应 Oh 下的 ${}^{4}A(G)$ 和 ${}^{4}E(G)$ 。而我们的计算结果却正好相反,即 ${}^{4}E(G)$ 能级在上。关 于这一点,万克宁^[33] 等人也得出了与我们相类似的结果。

YGG:Fe³⁺ 中,我们认为 26320 cm⁻¹ 和 26970 cm⁻¹ 是 Fe³⁺ 对的双中心跃迁谱。由于 YGG:Fe³⁺ 中的 Fe³⁺ 处于较 YIG 中的 Fe³⁺ 更加畸变的场中,故好象双中心跃迁与场 的畸变性质有关。这一点,还有待进一步证明。YIG 中 ${}^{*}E[T_{2g}(G)], {}^{*}E[T_1(G)]$ 和 ${}^{*}B[T_2(D)], YGG:Fe³⁺ 中的 <math>{}^{*}A_2[T_{1g}(G)], {}^{*}E[T_{2g}(G)], {}^{*}E[E_g(D)]$ 和 ${}^{*}E[T_1(G)]$ 没有实 验值与其对应,这可能是这些项的跃迁很弱,实验上没有测到的缘故。这一想法得到了 YIG 中 ${}^{*}A_2[T_{1g}(G)], {}^{*}E[E_g(D)]$ 和 YGG:Fe³⁺ 中 ${}^{*}B[T_2(D)]$ 处的谱图^[3] 的支持,即实 验上观察到的峰确实非常弱。

YIG 中 16160 cm⁻¹, 16420 cm⁻¹, 17360 cm⁻¹; 19190 cm⁻¹, 19650 cm⁻¹, 20200 cm⁻¹ 这 两组分裂谱,可能是低对称场和旋轨耦合联合作用的结果。这一点还有待进一步探讨。

758		光	学	<u> </u>	é	报	<u>-</u>			7
		+20a	_ נע [$\lambda_2 + D_3$) $\gamma_1 + 20\alpha$		$[2^{-}D_{3})$	$5D_{2}-13D_{3})$	$5D_{i} + 3D_{3}$)
	$\begin{array}{c} \mathbf{A}[T_1(G] \\ 4 \\ 75 \\ 75 \\ 75 \\ 75 \\ 7 $	0 0 10 <i>A</i> -25B+5C+	⁴ B[T ₂ (G 0	0	0	$\frac{3}{\sqrt{21}} \left(-4D_1 + 5D_1 - 5D_1 + 5D_1 - 25B_1 + 5D_1 + 5D$	${}^{4}E[T_2(G)]$	$\frac{7}{2\sqrt{35}}$ (5D)	0 $\frac{1}{4\sqrt{35}}(60D_1+6)$	$\frac{3}{4\sqrt{21}}(8D_1+2)$
	0 0 0	0 -25B+5C+20a	4B[E(G)] 0	o	$(4D_1 + 5D_3 + D_3)$	0 35 <i>B</i> +5 <i>C</i> +20 a	$T_1(G)$]	$\frac{1}{\sqrt{5}}(35D_2+D_3)$	$0 = \frac{(35D_4 + D_3)}{5}$	$\frac{1}{3}(4D_1 - 5D_3 + D_3)$
		104-			3 <u>√21</u> (-	10.4-2	4E[1	3D ₃)	+2 <i>β</i> <u>√</u>
- 35 <i>B</i> ,	A1(G)] 0 0	56+200	0 0	$_{1}+5D_{3}+D_{3}$)	0	C+12a+2β	נט	0	: <i>D</i> ₁−25 <i>D</i> ₂−2 0	tB+7C+12α
★ S)>=10.4	ج ج ل	7 - 70 T	⁴ B[T ₂ ($\frac{2}{\sqrt{7}}(-4D)$		4 - 13B + 7	${}^{4}E[T_{2}(H$		$\frac{1}{2\sqrt{7}}(-8)$	10.4-13
附 7。+ V。 6 4 (.F)] (C+12α+2		$-D_{3}$)	Ì	x +2β	IOT			2α+2β 2α+2β	
(<i>B</i>) (<i>S</i>)	⁴ ⊿[<i>T</i> ₁ (0 10 <i>A</i> −−13 <i>B</i> +		$\left[\begin{array}{c} A_2(F) \end{array} \right] \\ \left(-4D_1 - 5D_2 \right] \end{array}$	0	3 B+7 C+12	1	$[T_1(F)]$	0	(<i>-8D</i> 1-25) -13 <i>B</i> +7C+1	
41 -	[((20+60		(ĝa	104-J		* E[c	<u>2/105</u> 104-	
中的微犹矩	⁴ ⊿[<i>E</i> (<i>U</i> 0 <i>A</i> −18 <i>B</i> +5		[[<i>T</i> ₂(<i>U</i>)] 0	18B+5 0+			_	$\frac{1}{105}D_1$	1+5C+6a	
对称晶场口	2ß 10		* *	104-			$E[T_3(D)]$	8 <u> </u>	10.4 - 18.5	
组态在 84	[(P)] + $TC+2a+$ + $TC+2a+$	×2	[E(D)] B+5C+60				م ور .	0+2a+2ß	e.	
黎下 动 电子	⁴ ⊿[<i>T</i> 10 <i>A</i> −28 <i>B</i> -	<	€ B 10.4−18				$\mathbb{E}[T_1(P)]$	4-28B+7(
M	- i				111- C/J	······································	4	102		

参考文献

- [1] D. E. Lackhson, G. B. Scott et al.; Solid State Communication, 1974, 14, No. 9 (May), 861.
- [2] G. B. Scott, J. L. Page; Phys. Stat. Sol. (b), 1977, 79, No. 1 (Jan), 203.
- [3] G. B. Scott et al.; Phys. Rev. B, 1974, 10, No. 3 (Aug), 971.
- [4] T. K. Vien, J. L. Dormann et al; Phys. Stat. Sol. (b), 1975, 71, No. 2 (May), 731.
- [5] D. L. Wood, J. P. Remeika; J. Appl. Phys., 1967, 38, No. 3 (Mar), 1038.
- [6] F. Euler, J. A. Bruce; Acta Cryst., 1965, 19, Part 4 (Oct), 971.
- [7] S. Geller, M. A. Gilleo; J. Phys. Chem. Solid, 1957, 3, No. 1~2 (Feb), 30.
- [8] Zhao Miaguang et al.; J. Phys. (C): Solid State Phys., 1982, 15, No. 29 (Oct), 5959.
- [9] 万克宁等; 《物理学报》, 1984, 33, No. 2 (Feb), 260.

A theoretic explanation of the absorption spectra of YIG and YGG: Fe³⁺ at crystal field of low symmetry

BAI GUIRU AND XU CHANGQING

(Division for Condensed Matter Theory, University of Science and Technology of China)

(Received 18 November 1986)

Abstract

Using SCF d-orbital theory of Fe³⁺-ion in complex, we have calculated the absorption spectra of YIG and YGG:Fe³⁺ at low symmetry D_{3d} and S_4 respectively. With only two parameter \overline{N} and μ , we have explained the splitting at 10800 cm⁻¹, 21150 cm⁻¹, 25700 cm⁻¹, 27600 cm⁻¹ in YIG, and pointed out that the peaks at 26320 cm⁻¹ and 26970 cm⁻¹ in YGG:Fe³⁺ belong to two center transitions of Fe³⁺-ion pairs. Some confusion in the theory of the absorption specta of YIG and YGG:Fe³⁺ have been clarified.

Key Words: absorption spectra of YIG; absorption spectra of YGG: Fe⁸⁺.

¢.